Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Med Sci (Paris) ; 37(11): 1062-1065, 2021 Nov.
Article in French | MEDLINE | ID: covidwho-1545680

ABSTRACT

The elimination of some senescent cells by « senolytic ¼ compounds can greatly improve the health of aged mice and in some cases reverse the effects of aging. Using a microbial exposure system that closely models coronavirus infection, it is possible to largely protect old mice from the effects of viral infection. This immediately suggests clinical application of the approach, and is the aim of ongoing phase II clinical trials in Covid-19 patients.


Subject(s)
COVID-19 Drug Treatment , Cellular Senescence , Senotherapeutics , Aging/drug effects , Animals , Cellular Senescence/drug effects , Clinical Trials, Phase II as Topic , Humans , Mice , SARS-CoV-2
2.
JCI Insight ; 6(21)2021 11 08.
Article in English | MEDLINE | ID: covidwho-1506181

ABSTRACT

COVID-19 is caused by SARS-CoV-2 (SC2) and is more prevalent and severe in elderly and patients with comorbid diseases (CM). Because chitinase 3-like-1 (CHI3L1) is induced during aging and CM, the relationships between CHI3L1 and SC2 were investigated. Here, we demonstrate that CHI3L1 is a potent stimulator of the SC2 receptor angiotensin converting enzyme 2 (ACE2) and viral spike protein priming proteases (SPP), that ACE2 and SPP are induced during aging, and that anti-CHI3L1, kasugamycin, and inhibitors of phosphorylation abrogate these ACE2- and SPP-inductive events. Human studies also demonstrate that the levels of circulating CHI3L1 are increased in the elderly and patients with CM, where they correlate with COVID-19 severity. These studies demonstrate that CHI3L1 is a potent stimulator of ACE2 and SPP, that this induction is a major mechanism contributing to the effects of aging during SC2 infection, and that CHI3L1 co-opts the CHI3L1 axis to augment SC2 infection. CHI3L1 plays a critical role in the pathogenesis of and is an attractive therapeutic target in COVID-19.


Subject(s)
Aging , COVID-19/metabolism , Chitinase-3-Like Protein 1/metabolism , Aging/drug effects , Aminoglycosides/pharmacology , Aminoglycosides/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Cell Line, Tumor , Chitinase-3-Like Protein 1/antagonists & inhibitors , HEK293 Cells , Humans , SARS-CoV-2/physiology , COVID-19 Drug Treatment
3.
Mol Cell Biochem ; 476(11): 3911-3922, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1281314

ABSTRACT

Human SARS Coronavirus-2 (SARS-CoV-2) has infected more than 170 million people worldwide and resulted in more than 3.5 million deaths so far. The infection causes Coronavirus disease (COVID-19) in people of all age groups, notably diabetic and old age people, at a higher risk of infectivity and fatality. Around 35% of the patients who have died of the disease were diabetic. The infection is associated with weakening immune response, chronic inflammation, and potential direct pancreatic impairment. There seems to be a three-way association of the SARS-CoV-2 infection with diabetes and aging. The COVID-19 infection causes metabolism complications, which may induce diabetes and accelerate aging in healthy individuals. How does diabetes elevate the likelihood of the infection is not clearly understood. we summarize mechanisms of accelerated aging in COVID-19 and diabetes, and the possible correlation of these three diseases. Various drug candidates under different stages of pre-clinical or clinical developments give us hope for the development of COVID-19 therapeutics, but there is no approved drug so far to treat this disease. Here, we explored the potential of anti-diabetic and anti-aging natural compounds for the COVID-19 treatment. We have also reviewed different therapeutic strategies with plant-based natural products that may be used to cure patients infected with SARS-CoV-2 and post-infection syndrome.


Subject(s)
Aging/drug effects , COVID-19 Drug Treatment , Diabetes Mellitus/drug therapy , SARS-CoV-2/physiology , Age Factors , Animals , Antioxidants/therapeutic use , COVID-19/epidemiology , COVID-19/immunology , Humans , Hypoglycemic Agents/therapeutic use , Pandemics , Phytochemicals/therapeutic use
4.
Cells ; 10(6)2021 06 06.
Article in English | MEDLINE | ID: covidwho-1259430

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gave rise to the coronavirus disease 2019 (COVID-19) pandemic. A strong correlation has been demonstrated between worse COVID-19 outcomes, aging, and metabolic syndrome (MetS), which is primarily derived from obesity-induced systemic chronic low-grade inflammation with numerous complications, including type 2 diabetes mellitus (T2DM). The majority of COVID-19 deaths occurs in people over the age of 65. Individuals with MetS are inclined to manifest adverse disease consequences and mortality from COVID-19. In this review, we examine the prevalence and molecular mechanisms underlying enhanced risk of COVID-19 in elderly people and individuals with MetS. Subsequently, we discuss current progresses in treating COVID-19, including the development of new COVID-19 vaccines and antivirals, towards goals to elaborate prophylactic and therapeutic treatment options in this vulnerable population.


Subject(s)
Aging/physiology , COVID-19/prevention & control , COVID-19/therapy , Chemoprevention/trends , Metabolic Syndrome/therapy , Aging/drug effects , Aging/immunology , COVID-19/diagnosis , COVID-19/epidemiology , Chemoprevention/methods , History, 21st Century , Humans , Metabolic Syndrome/complications , Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Patient Care Planning/trends , Prevalence , Prognosis , Severity of Illness Index , Vulnerable Populations
5.
Molecules ; 26(7)2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1167670

ABSTRACT

Depression and anxiety disorders are widespread diseases, and they belong to the leading causes of disability and greatest burdens on healthcare systems worldwide. It is expected that the numbers will dramatically rise during the COVID-19 pandemic. Established medications are not sufficient to adequately treat depression and are not available for everyone. Plants from traditional medicine may be promising alternatives to treat depressive symptoms. The model organism Chaenorhabditis elegans was used to assess the stress reducing effects of methanol/dichlormethane extracts from plants used in traditional medicine. After initial screening for antioxidant activity, nine extracts were selected for in vivo testing in oxidative stress, heat stress, and osmotic stress assays. Additionally, anti-aging properties were evaluated in lifespan assay. The extracts from Acanthopanax senticosus, Campsis grandiflora, Centella asiatica, Corydalis yanhusuo, Dan Zhi, Houttuynia cordata, Psoralea corylifolia, Valeriana officinalis, and Withaniasomnifera showed antioxidant activity of more than 15 Trolox equivalents per mg extract. The extracts significantly lowered ROS in mutants, increased resistance to heat stress and osmotic stress, and the extended lifespan of the nematodes. The plant extracts tested showed promising results in increasing stress resistance in the nematode model. Further analyses are needed, in order to unravel underlying mechanisms and transfer results to humans.


Subject(s)
Antidepressive Agents/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Aging/drug effects , Aging/physiology , Animals , Antioxidants/pharmacology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Gene Knockout Techniques , Heat-Shock Response/drug effects , Longevity/drug effects , Longevity/genetics , Longevity/physiology , Mutation , Osmotic Pressure/drug effects , Oxidative Stress/drug effects , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism
7.
Drug Discov Today ; 25(6): 959-964, 2020 06.
Article in English | MEDLINE | ID: covidwho-828446

ABSTRACT

To celebrate the 25th anniversary of the cloning of the first mammalian p21-activated kinases (PAKs) (RAC/CDC42-activated kinases) by Ed Manser, the first international PAK symposium was held in NYC in October 2019. Among six distinct PAKs in mammals, PAK1 is the major 'pathogenic kinase', the abnormal activation of which is responsible for a wide variety of diseases and disorders including cancers, ageing processes and infectious and inflammatory diseases such as pandemic coronaviral infection. Recently, for a clinical application, a few potent (highly cell-permeable and water-soluble) PAK1 blockers have been developed from natural or synthetic PAK1 blockers (triptolide, vitamin D3 and ketorolac) via a series of 'chemical evolutions' that boost pharmacological activities >500 times.


Subject(s)
p21-Activated Kinases/antagonists & inhibitors , Aging/drug effects , Aging/metabolism , Animals , Enzyme Inhibitors/pharmacology , Evolution, Chemical , Humans , Inflammation/drug therapy , Inflammation/metabolism , Mammals/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism
8.
J Interferon Cytokine Res ; 40(9): 433-437, 2020 09.
Article in English | MEDLINE | ID: covidwho-713259

ABSTRACT

The essential scope of the coronavirus infectious disease 2019 (COVID-19) pandemic is focused on developing effective treatments and vaccines for acute SARS-CoV-2 infection. There is also a critical need to develop interventions to prevent the complications of COVID-19, which occur with an alarming frequency in older adults. Since severe pathologic effects of infection occur with increasing age, COVID-19 falls under the geroscience concept that all diseases in older adults have a common and major underlying cause of declining function and resilience. Geroscience posits that manipulation of aging will simultaneously delay the appearance or severity of major diseases because they share the same risk factor: aging and the multiple processes involved in aging. Drug combinations that target multiple aging processes and the cytokine networks associated with them would not necessarily limit SARS-CoV-2 infection rates but would prevent severe pathologic consequences of the disease in older adults by maintaining a more youthful-like resilience to infection-related complications. A drug cocktail aimed at controlling cytokine actions would complement current clinical treatments and vaccine effectiveness for COVID-19 and serve as a prototype for future age-related infectious disease pandemics wherein the elderly population is especially vulnerable.


Subject(s)
Aging/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Aging/physiology , Betacoronavirus , COVID-19 , Cytokines/blood , Humans , Pandemics , Physical Fitness/physiology , SARS-CoV-2
9.
Aging (Albany NY) ; 12(8): 6511-6517, 2020 Mar 30.
Article in English | MEDLINE | ID: covidwho-30425

ABSTRACT

COVID-19, also known as SARS-CoV-2, is a new emerging zoonotic corona virus of the SARS (Severe Acute Respiratory Syndrome) and the MERS (Middle East Respiratory Syndrome) family. COVID-19 originated in China and spread world-wide, resulting in the pandemic of 2020. For some reason, COVID-19 shows a considerably higher mortality rate in patients with advanced chronological age. This begs the question as to whether there is a functional association between COVID-19 infection and the process of chronological aging. Two host receptors have been proposed for COVID-19. One is CD26 and the other is ACE-2 (angiotensin-converting enzyme 2). Interestingly, both CD26 and the angiotensin system show associations with senescence. Similarly, two proposed therapeutics for the treatment of COVID-19 infection are Azithromycin and Quercetin, both drugs with significant senolytic activity. Also, Chloroquine-related compounds inhibit the induction of the well-known senescence marker, Beta-galactosidase. Other anti-aging drugs should also be considered, such as Rapamycin and Doxycycline, as they behave as inhibitors of protein synthesis, blocking both SASP and viral replication. Therefore, we wish to speculate that the fight against COVID-19 disease should involve testing the hypothesis that senolytics and other anti-aging drugs may have a prominent role in preventing the transmission of the virus, as well as aid in its treatment. Thus, we propose that new clinical trials may be warranted, as several senolytic and anti-aging therapeutics are existing FDA-approved drugs, with excellent safety profiles, and would be readily available for drug repurposing efforts. As Azithromycin and Doxycycline are both commonly used antibiotics that inhibit viral replication and IL-6 production, we may want to consider this general class of antibiotics that functionally inhibits cellular protein synthesis as a side-effect, for the treatment and prevention of COVID-19 disease.


Subject(s)
Aging/drug effects , Antiviral Agents , Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Age Factors , Aged , Aged, 80 and over , Aging/metabolism , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Coronavirus Infections/mortality , Coronavirus Infections/prevention & control , Dipeptidyl Peptidase 4/metabolism , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Pandemics/prevention & control , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , Pneumonia, Viral/mortality , Pneumonia, Viral/prevention & control , Quercetin/pharmacology , Quercetin/therapeutic use , Receptors, Virus/metabolism , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL